

Test Report Summary

HT08701

Gecko-MT Standard Layout (G125 Series) General Testing

// HARWIN.COM

H

1. <u>Introduction</u>

1.1 Description and Purpose

The Harwin Gecko-MT Standard Layout (G125 Series) range is a range for the 1.25mm pitch Gecko connector series, offering a combination or signal and power contacts in a variety of configurations. The following tests were carried out to verify the Component Specification criteria and determine whether any alterations are required for this new range.

1.2 Conclusion

The following data has been collated from Harwin test reports QA000226, QA000227, QA000240, QA000278, QA000279, QA000290 & QA000318. The results show that the range adheres to the Component Specification for the Gecko range, which can be downloaded here:

https://cdn.harwin.com/pdfs/C125XX_G125_Gecko_Connectors.pdf

2. Test Method, Requirements and Results

2.1 Specification Parameters

Tests were either carried out in general accordance with EIA-364 standards (or their BS EN 60068 equivalent. The list of tests covered in this summary are as follows:

Testing Standard	Description of Test	Section	Page No.
EIA-364-09C: 1999	Durability	3.1	3-4
EIA-364-05B: 1998	Contact Insertion & Retention	3.2	5-6
EIA-364-35B: 1998	Insert Retention	3.2	5-6
EIA-364-20C: 2004	Withstand Voltage	3.3	7
EIA-364-21C: 2000	Insulation Resistance	3.4	8-9
EIA-364-70A: 1998	Temperature Rise versus Current & De-Rating Curves	3.5	10-14
EIA-364-32C: 2000 (BS EN 60068-2-14:2009)	Thermal Shock (Temperature Cycling)	3.6	15
EIA-364-26B: 1999 (BS EN 60068-2-11:1999)	Salt Spray	3.7	16
EIA-364-31B: 1999 (BS EN 60068-2-78: 2013)	Humidity	3.8, 3.9	16
EIA-364-28D: 1999 (BS EN 60068-2-6: 2008)	Vibration	3.10	17
EIA-364-27B: 1996 (BS EN 60068-2-27:2009)	Mechanical Shock	3.11	18

3. Individual Test Results

3.1 Durability to EIA-364-09C: 1999

Connectors were tested for durability in a variety of configurations to determine maximum insertion forces and minimum withdrawal forces for each combination available at launch. The connectors were mated and unmated a total of 1,000 cycles at a speed of 25mm/min with maximum insertion and minimum withdrawal force values recorded for each environmental test condition as well as preconditioned values.

Specification set at:

- Signal Contacts Maximum Insertion Force (per contact) = 2.8N Max.
- Power Contacts Maximum Insertion Force (per contact) = 7.0N Max.
- Signal & Power Contacts Withdrawal Force (per contact) = 0.2N Min.
- Durability = 1,000 operations

Female	Male Te		Condition	Average Force (N)	
Connector	Connector	Setup		Max.	Min.
				Insertion	Withdrawal
		Initial	26.7	12.4	
			Temp. Life – 96hrs	15.7	9.5
G125-22496F1-	G125-MH104M4-	1	Temp. Life – 1000hrs	14.0	8.0
02-04-00	02AD000P		Humidity - 96hrs	26.1	8.3
		Thermal Shock	23.3	7.7	
		Salt Spray	26.8	13.2	
			Initial	101.2	17.8
			Temp. Life – 96hrs	-	-
G125-22496F1-	G125-MH124M4-	2	Temp. Life – 1000hrs	-	-
02-24-00 02AD000P	02AD000P		Humidity - 96hrs	-	-
			Thermal Shock	-	-
		Salt Spray	-	-	
		Initial	52.7	19.0	
		3	Temp. Life – 96hrs	34.8	5.2
G125-22496F1-	G125-MH108M3-		Temp. Life – 1000hrs	23.2	10.8
06-08-00	06AD000P		Humidity - 96hrs	38.6	13.5
			Thermal Shock	39.3	12.7
			Salt Spray	57.9	20.5
			Initial	21.6	7.3
			Temp. Life – 96hrs	34.5	12.8
G125-FV104F1-	G125-32496M1-	5	Temp. Life – 1000hrs	28.0	11.3
02AB000P	02-04-00	5	Humidity - 96hrs	31.1	10.8
			Thermal Shock	19.0	5.9
			Salt Spray	30.0	10.8
			Initial	41.8	9.1
			Temp. Life – 96hrs	-	-
G125-FV124F1-	G125-32496M1-	6	Temp. Life – 1000hrs	57.3	15.6
02AB000P	02-24-00	0	Humidity - 96hrs	-	-
			Thermal Shock	-	-
			Salt Spray	—	-

HT08701			
Test Report for Gecko-MT	Standard Layout (G125	Series) General	Testing

Female Male		Test Condition		Average Force (N)			
Connector	Connector	Setup	Conortion	Max. Insertion	Min. Withdrawal		
			Initial	53.7	14.1		
			Temp. Life – 96hrs	60.2	28.1		
G125-FV108F1-	G125-32496M1-	7	Temp. Life – 1000hrs	57.9	28.0		
06AB000P	06-08-00	,	Humidity - 96hrs	53.2	14.4		
		Thermal Shock	34.6	11.3			
			Salt Spray	41.8	16.8		
			Initial	60.2	12.0		
			Temp. Life – 96hrs	-	-		
G125-22496F1-	G125-32496M1-	0	Temp. Life – 1000hrs	-	-		
04-16-00	04-16-00	9	Humidity - 96hrs	-	-		
			Thermal Shock	-	-		
			Salt Spray	-	-		
		Initial	60.2	12.0			
		Temp. Life – 96hrs	-	-			
G125-22496F2-	G125-MH104M3-	10	Temp. Life – 1000hrs	-	-		
04-04-00	04AD000P		Humidity - 96hrs	-	-		
			Thermal Shock	-	-		
			Salt Spray	-	-		
			Initial	35.8	10.4		
			Temp. Life – 96hrs	-	-		
G125-22496F2-	G125-MH108M3-	11	Temp. Life – 1000hrs	57.1	5.9		
03-08-00	03AD000P	11	Humidity - 96hrs	-	-		
			Thermal Shock	_	-		
			Salt Spray	-	-		
			Initial	76.9	20.6		
			Temp. Life – 96hrs	-	-		
G125-FV108F1-	G125-32496M2-	10	Temp. Life – 1000hrs	-	-		
03AB000P	03-08-00	12	Humidity - 96hrs	-	_		
			Thermal Shock	-	-		
			Salt Spray	-	-		

()

О

3.2 Contact Insertion & Retention to EIA-364-05B: 1998 & Insert Retention to EIA-364-35B: 1998

Contacts and hardware were tested for retention in housings across the range of Gecko-MT connectors. Using an automated force gauge, pressure testing was conducted in accordance with EIA-364-05B and EIA-364-35B. Further destructive testing was also performed, pushing contacts and hardware from the housings, recording the force to do so.

Specification set at:

- Contact Retention in Housing (all contact types) = 6.0N Min.
- Screw-Lok Retention in Housing = 20.0N Min.

All samples adhere to the above specification, with certain environmental test conditions having a greater impact on contact and hardware retention.

Connector Part No.	Condition	Average Retention	Average Hardware Retention	
		Signal Contact	Power Contact	Force (N)
	Initial	24.3	92.6	38.8
	Temp. Life – 96hrs	26.7	105.6	-
6125-2249651-02-04-00	Temp. Life – 1000hrs	18.6	78.7	-
G125-22496F1-02-04-00	Humidity - 96hrs	23.5	95.9	-
	Thermal Shock	24.3	117.7	-
	Salt Spray	21.0	103.8	-
	Initial	23.3	108.3	32.2
	Temp. Life – 96hrs	25.6	102.9	-
G125-2249651-06-08-00	Temp. Life – 1000hrs	16.4	79.2	-
G125-22496F1-06-08-00	Humidity - 96hrs	24.0	114.4	-
	Thermal Shock	23.2	113.5	-
	Salt Spray	21.8	108.5	-
G125-22496F1-06-08-00	Initial	-	-	90.4
G125-22496F3-06-08-00	Initial	-	-	82.2
G125-22496F1-02-04-00	Initial	-	-	26.8
G125-22496F1-04-04-00	Initial	-	-	23.7
G125-22496F1-04-04-00	Initial	-	-	31.0
G125-22496F2-04-16-00	Initial	-	-	27.0
G125-22496F1-03-08-00	Initial	-	-	37.1
	Initial	21.5	86.7	88.8
	Temp. Life – 96hrs	28.6	109.4	-
G125-32496M1-02-04-00	Temp. Life – 1000hrs	21.8	80.7	-
G125-52490M1-02-04-00	Humidity - 96hrs	18.8	96.7	-
	Thermal Shock	20.7	111.3	-
	Salt Spray	27.4	104.8	-
	Initial	19.4	93.9	70.7
	Temp. Life – 96hrs	33.0	114.9	-
C12E-32406M1-06-09-00	Temp. Life – 1000hrs	20.3	76.5	-
G125-52490M1-00-08-00	Humidity - 96hrs	23.9	106.5	-
	Thermal Shock	24.4	116.3	-
	Salt Spray	32.41	123.7	-
G125-32496M3-03-08-00	Initial	-	-	42.3

HT08701 Test Report for Gecko-MT Standard Layout (G125 Series) General Testing

Connector Part No.	Condition	Average Retention	Average Hardware	
		Signal Contact	Power Contact	Retention Force (N)
	Initial	17.1	116.8	59.6
	Temp. Life – 96hrs	18.9	137.3	-
G125-FV104F1-02AB000P	Temp. Life – 1000hrs	14.9	63.3	-
	Humidity - 96hrs	16.7	112.4	-
	Thermal Shock	15.0	113.5	-
	Salt Spray	10.6	106.27	-
G125-FV108F3-06AB000P	Initial	12.5	108.9	92.1
	Temp. Life – 96hrs	13.2	112.9	-
	Temp. Life – 1000hrs 12.7		60.8	-
	Humidity - 96hrs	12.9	105.6	-
	Thermal Shock	11.9	111.9	-
	Salt Spray	20.8	106.8	-
G125-FV104F3-02AB000P	Initial	15.7	111.9	108.4
G125-FV108F1-06AB000P	Initial	14.6	110.2	49.6
	Initial	10.7	66.5	92.4
	Temp. Life – 96hrs	17.6	78.8	-
C125 MU104M4 024 D000D	Temp. Life – 1000hrs	14.0	52.3	-
G125-MH104M4-02AD000P	Humidity - 96hrs	10.9	63.2	-
	Thermal Shock	13.0	72.0	-
	Salt Spray	15.8	76.8	-
	Initial	9.8	63.2	100.2
	Temp. Life – 96hrs	17.5	64.8	-
G125-MH108M4-064D000P	Temp. Life – 1000hrs	13.5	43.9	-
GIZS-MINOOM+-COADOOOF	Humidity - 96hrs	8.8	61.1	-
	Thermal Shock	13.8	67.2	-
	Salt Spray	14.7	67.3	-
G125-MH104M3-02AD000P	Initial	-	-	58.8
G125-MH108M3-06AD000P	Initial	-	-	52.7

3.3 Withstand Voltage to EIA-364-20C: 2004

Connectors were tested in a variety of configurations.

- Sea Level conditions were carried out at an ambient absolute pressure of 986mB.
- Altitude was carried out in a vacuum chamber reduced to an absolute pressure of 44mB, to represent an altitude of 21,336m (70,000ft).

Specification set at:

- Working Voltage at sea level = 450V DC or AC_{peak}
- Voltage Proof at sea level = 600V DC or AC_{peak}
- Working Voltage at 21,336m (70,000ft) = 250V DC or AC_{peak}
- Voltage Proof at 21,336m (70,000ft) = 350V DC or AC_{peak}

Female Connector	Male Connector	Test Setup	Condition	Power Result	Signal Result
G12E-22496E1-02-04-00	G125-MH104M4-024D000B	12	Sea Level	PASS	PASS
G125-22498F1-02-04-00	G125-MH104M4-02AD000P	15	Altitude	PASS	PASS
G125-2240651-02-24-00	C125-MH124M4-024D000B	14	Sea Level	PASS	PASS
G123-22496F1-02-24-00	G123-MH124M4-02AD000P	14	Altitude	PASS	PASS
G125-22496E1-06-08-00	C125-MH108M3-06AD000P	15	Sea Level	PASS	PASS
G125-22496F1-06-08-00	G125-MH108M3-08AD000P	15	Altitude	PASS	PASS
G125-EV104E1-024B000B	C125-32496M1-02-04-00	16	Sea Level	PASS	PASS
G125-FV104F1-02AB000F	8125-52490011-02-04-00	10	Altitude	PASS	PASS
G125-EV124E1-02AB000P	G125-32496M1-02-24-00	17	Sea Level	PASS	PASS
G125-1 V12+1 1-02AD000F	G123-32+30M1-02-24-00	17	Altitude	PASS	PASS
G125-EV108E1-06AB000B	G125-32496M1-06-08-00	18	Sea Level	PASS	PASS
	G125-52490M1-00-08-00	10	Altitude	PASS	PASS
G125-22496E2-04-04-00	G125-MH104M3-044D000P	19	Sea Level	PASS	PASS
		15	Altitude	PASS	PASS
G125-22496F2-03-08-00	G125-MH108M3-034D000P	20	Sea Level	PASS	PASS
		20	Altitude	PASS	PASS
G125-EV104E1-044B000P	G125-32496M2-04-04-00	21	Sea Level	PASS	PASS
		21	Altitude	PASS	PASS
G125-EV108E1-03AB000P	G125-32496M2-03-08-00	22	Sea Level	PASS	PASS
		~~~	Altitude	PASS	PASS
G125-22496E2-04-16-00	G125-MH116M3-04AD000B		Sea Level	PASS	PASS
		25	Altitude	PASS	PASS
G125-EV116E1-044B000P	G125-32496M2-04-16-00	24	Sea Level	PASS	PASS
GIZD-I VIIOI I-OTABOOOP	IDF1-04AB000P G125-32496M2-04-16-00		Altitude	PASS	PASS



# 3.4 Insulation Resistance to EIA-364-21C: 2000

The connectors were tested for the Initial insulation resistance prior to, and following, conditioning in a variety of configurations. 12 test setups of various contact configurations were tested for each environmental condition. Tests were carried out using a 500V DC voltage source.

Specification set at:

- Insulation Resistance (initial and after conditioning) = 10G  $\Omega$  minimum at 500V DC
- Insulation Resistance (after Salt Spray conditioning) =  $1G\Omega$  minimum at 500V DC

Female Connector	Male Connector	Test Setup	Condition	Power Result	Signal Result
			Initial	PASS	PASS
			Temp. Life – 96hrs	PASS	PASS
G125-22496F1-02-04-00	G125-MH104M4-02AD000P	13	Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS
			Initial	PASS	PASS
G125-22496E1-02-24-00			Temp. Life – 96hrs	PASS	PASS
G125-22496F1-02-24-00	G125-MH124M4-02AD000P	14	Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS
			Initial	PASS	PASS
		15	Temp. Life – 96hrs	PASS	PASS
G125-22496F1-06-08-00	G125-MH108M3-06AD000P		Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS
G125-FV104F1-02AB000P G125-32496M1-02-04-00		16	Initial	PASS	PASS
			Temp. Life – 96hrs	PASS	PASS
	G125-32496M1-02-04-00		Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
		Salt Spray	PASS	PASS	
G125-FV124F1-02AB000P G125-32496M1-02-24-00		17	Initial	PASS	PASS
			Temp. Life – 96hrs	PASS	PASS
	G125-32496M1-02-24-00		Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS
			Initial	PASS	PASS
			Temp. Life – 96hrs	PASS	PASS
G125-FV108F1-06AB000P	G125-32496M1-06-08-00	18	Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS
			Initial	PASS	PASS
			Temp. Life – 96hrs	PASS	PASS
G125-22496F2-04-04-00	G125-MH104M3-04AD000P	19	Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS
			Initial	PASS	PASS
			Temp. Life – 96hrs	PASS	PASS
G125-22496F2-03-08-00	G125-MH108M3-03AD000P	20	Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS



			Initial	PASS	PASS
		21	Temp. Life – 96hrs	PASS	PASS
G125-FV104F1-04AB000P	G125-32496M2-04-04-00		Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS
			Initial	PASS	PASS
G125-FV108F1-03AB000P	G125-32496M2-03-08-00	22	Temp. Life – 96hrs	PASS	PASS
			Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS
		23	Initial	PASS	PASS
	G125-MH116M3-04AD000P		Temp. Life – 96hrs	PASS	PASS
G125-22496F2-04-16-00			Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS
			Initial	PASS	PASS
			Temp. Life – 96hrs	PASS	PASS
G125-FV116F1-04AB000P	G125-32496M2-04-16-00	24	Temp. Life – 1000hrs	PASS	PASS
			Thermal Shock	PASS	PASS
			Salt Spray	PASS	PASS



# 3.5 Temperature Rise versus Current to EIA-364-70A: 1998

Connector test setups were tested to establish a temperature rise (above ambient) vs the level of applied current. Each combination was tested with signal and power contacts on separate circuits, with a constant 2A being passed through the signal contacts and increasing the output to the power contacts by 2A incrementally, with overall system temperature rise being measured. This test was carried out beginning at ambient temperature averaging 25°C.

Specification set at:

- Current Rating at Ambient (25°C) Signal Contact = 2.0A max
- Current Rating (25°C) Power Contact = 10.0A max

Female Connector	Male Connector		Power Contacts Current for 30°C temp. rise (A)					
		l est Setuo	Pco-	Bco- Temp		Salt	Humi	Thormal
		Setop	Cond.	96 hrs	1000 hrs	Spray	dity	Shock
G125-22496F1-02-04-00	G125-MH104M4-02AD000P	1	12	10	8	12	10	10
G125-22496F1-06-08-00	G125-MH108M4-06AD000P	З	11	10	9	12	11	11
G125-FV104F1-02AB000P	G125-32496M1-02-04-00	5	11	11	6	12	12	12
G125-FV108F1-06AB000P	G125-32496M1-06-08-00	7	10	8	6	10	9	9
G125-22496F2-04-16-00	G125-32496M3-04-16-00	9	12	-	-	-	-	-
G125-22496F2-04-04-00	G125-32496M3-04-04-00	10	11	-	-	-	-	-
G125-22496F2-03-08-00	G125-32496M3-03-08-00	11	12	-	-	-	-	-
G125-FV108F1-03AB000P	G125-32496M2-03-08-00	12	10	-	-	-	-	_



Graph 1: Comparison of Pre-Conditioned Test Setups







Graph 2: Condition comparison of Test Setup 1













Graph 5: Condition comparison of Test Setup 7



#### De-Rate Curves for Current versus Ambient Temperature



Graph 6: Condition comparison of Pre-Conditioned Test Setups



Graph 7: Condition comparison of Test Setup 1





Graph 8: Condition comparison of Test Setup 3



Graph 9: Condition comparison of Test Setup 5





Graph 10: Condition comparison of Test Setup 7

# 3.6 Thermal Shock (Temperature Cycling) to EIA-364-32C: 2000

This test was conducted in general accordance with BS EN 60068-2-14:2009 Test Na & EIA-364-32C Test Condition 4.

Specification set at:

- Temperature extremes of -65°C to +150°C
- 5 cycles with a dwell time of 30 minutes

The samples were subjected to post-conditioned tests for temperature vs current, voltage breakdown, insulation resistance and durability, the results for which can be found in their respective sections of this report. Following visual inspection of the samples there was no obvious change to the samples noted.



Graph 9: Thermal Shock Temperature Plot



Figure 1: Samples in Thermal Shock Chamber



## 3.7 Salt Spray to EIA-364-26B: 1999

Samples were tested for Salt Spray in accordance with BS EN 60068-2-11:1999 & EIA-364-26B Test Condition B.

Specification set at:

- 48 hours continuous exposure with 5% NaCl @+35°C
- Washed and then dried for 16 hours @ +38°C

The samples were subjected to post-conditioned tests for temperature vs current, voltage breakdown, insulation resistance and durability, the results for which can be found in their respective sections of this report. Following visual inspection of the samples there was no obvious change to the samples noted other than some observed rusting/corrosion on the stainless steel hardware of the connectors.



Figure 2: Samples in Thermal Shock Chamber

#### 3.8 Humidity to EIA-364-31B: 1999

Test is in general accordance with BS EN 60068-2-78: 2013 Test Cab and EIA-364-31B: 2000 Method 2 Test Condition A. The samples were pre-conditioned for 24 hours at 50°C then suspended in a humidity chamber for 96 hours at 40°C with a relative humidity of 90-95%. The connector assemblies were measured for temperature vs current, voltage breakdown, insulation resistance and durability, as well as visual inspection post-testing.

Specification set at:

• 90-95% Relative Humidity at +40°C for 96 hours duration.

The samples were subjected to post-conditioned tests for temperature vs current, voltage breakdown, insulation resistance and durability, the results for which can be found in their respective sections of this report. There were no obvious visual changes to the connector assemblies.



# 3.10 Mechanical Vibration to EIA-364-28B: 1999

Samples were tested in general accordance with BS EN 60068-2-6: 2008 Test Fc & EIA-364-28B: 1999 Test Condition 4. The samples were subjected to a swept sine test, with continuous monitoring for discontinuities of 1 microsecond or longer. Samples were tested for 12 cycles of 20 minutes, for a duration of 4 hours in each axis and cables were restrained at a minimum of 200mm from the connectors.

The following combinations were tested:

- G125-22496F1-02-04-00 & G125-MH104M4-02AD000P (Test Setup 1)
- G125-22496F3-06-08-00 & G125-MH108M3-06AD000P (Test Setup 4)
- G125-FV104F1-02AB000P & G125-32496M1-02-04-00 (Test Setup 5)
- G125-FV108F3-06AB000P & G125-32496M3-06-08-00 (Test Setup 8)

Specification set at:

• 10Hz - 2,000Hz, 196.1m/s² (20gn) peak in all three axes (X/Y/Z).

There were no discontinuities or triggers noted on any sample during the testing process. Upon completion, the samples were visually inspected with no obvious changes to the samples noted.



Graph 11: Typical Swept Sine Vibration Plot



Figure 3: Vibration test setup with accelerometer position



# 3.10 Mechanical Shock to EIA-364-27B : 1996

Test is in general accordance with BS EN 60068-2-27:2009 Test Ea & EIA-364-27B Test Condition C. The samples were subjected to a half haversine shock test, with three shocks in each axis and continuous monitoring of 1 microsecond or longer.

The following combinations were tested:

- G125-22496F1-02-04-00 & G125-MH104M4-02AD000P (Test Setup 1)
- G125-22496F3-06-08-00 & G125-MH108M3-06AD000P (Test Setup 4)
- G125-FV104F1-02AB000P & G125-32496M1-02-04-00 (Test Setup 5)
- G125-FV108F3-06AB000P & G125-32496M3-06-08-00 (Test Setup 8)

Specification set at:

- Shock Pulse: 100g
- Pulse Duration: 6ms Half Haversine
- 3 shocks in each axis

The were no discontinuities or triggers noted on any sample during the testing process. Upon completion, the samples were visually inspected with no obvious changes to the samples noted.



Graph 12: Typical Half Haversine Shock plot



Figure 4: Shock test setup with accelerometer position