



# **Test Report Summary**

HT06005

General Testing of Archer Kontrol (M55 Series) Connectors





## 1. Introduction

## 1.1. Description and Purpose

Archer Kontrol (M55 Series) is a range of board-to-board and cable-to-board 1.27mm pitch connectors, with polarised, shrouded mouldings, hold-down SMT board fixing, location pegs, and a choice of orientation and connector heights in both male and female halves.

The Archer Kontrol range is designed to perform as an improved specification connector over existing 1.27mm pitch (M50 and M52 series) connectors, whilst still maintaining the compact size. The following tests were carried out to confirm the requirements of this design intent.

## 1.2. Conclusion

The following data has been collated from Harwin Test report numbers 1559, 1695, 1702, 1746, QA000109, and QA000307. The results were used to define the Component Specification for the Archer Kontrol range. The tests indicate that the product fulfils the criteria of an improved connection system over the existing 1.27mm connector products.

NOTE: Some results mention a 24-contact connector - these connectors were manufactured during the product development phase, but were not added to the final launch product sizes.

# 2. <u>Test Requirements</u>

# 2.1. Specification Parameters

Tests were carried out in general accordance with EIA 364 standards. The list of tests covered in this summary are as follows:

| Testing Standard | Description of Test                         | Section | Page No. |
|------------------|---------------------------------------------|---------|----------|
| EIA-364-23B      | Contact Resistance                          | 3.1     | 3        |
| EIA-364-20C      | Dielectric Withstanding Voltage             | 3.2     | 3        |
| EIA-364-21C      | Insulation Resistance                       | 3.3     | 3        |
| EIA-364-70A      | Temperature Rise Versus Current             | 3.4     | 4        |
| EIA-364-32C      | Thermal Shock (Temperature Cycling)         | 3.5     | 5        |
| EIA-364-17B      | Temperature Life                            | 3.6     | 5        |
| EIA-364-26B      | Salt Spray                                  | 3.7     | 5-6      |
| EIA-364-31B      | Humidity                                    | 3.8     | 6        |
| EIA-364-28D      | Vibration                                   | 3.9     | 6        |
| EIA-364-13C      | Durability, Insertion and Withdrawal Forces | 3.10    | 7-8      |
| EIA-364-29C      | Contact Retention Force                     | 3.11    | 8        |
| n/a              | Plating Finish Thicknesses                  | 3.12    | 8        |
| n/a              | Frequency Range                             | 3.13    | 9-10     |

## 2.2. Test Samples

The test samples selected for each test will be detailed within the test method.



# 3. Test Methods and Results

#### 3.1. Contact Resistance: EIA-364-23B

<u>Methodology:</u> The following combinations were tested:

- Horizontal-to-Horizontal: 26-contact connectors, taking results of 5 different sets of pins for initial contact resistance.
- Vertical-to-Vertical: 26-contact connectors, taking results of 5 different sets of pins for initial contact resistance.
- Cable-to-Vertical: 12-contact connectors were measured, taking results from all pins for initial contact resistance.

Specification:  $25m\Omega$  maximum.

Results:

| Male Connector       | Female Connector     | Average ( $m\Omega$ ) | Maximum (m $\Omega$ ) | Minimum (m $\Omega$ ) |  |
|----------------------|----------------------|-----------------------|-----------------------|-----------------------|--|
| M55-7102642R         | M55-6102642R         | 17 7                  | 18.7                  | 17.2                  |  |
| Horizontal connector | Horizontal connector | 17.7                  | 10.7                  | 17.2                  |  |
| M55-7002642R         | M55-6002642R         | 12.2                  | 12.7                  | 11 7                  |  |
| Vertical connector   | Vertical connector   | 12.2                  | 12.7                  | 11.7                  |  |
| M55-7021242R         | M55-8001242-0150A    | 12.6                  | 15 7                  | 10.3                  |  |
| Vertical connector   | Cable Assembly       | 12.6                  | 15.7                  | 10.3                  |  |

# 3.2. Dielectric Withstanding Voltage: EIA-364-20C

<u>Methodology:</u> Combinations of 26 & 12-contact connectors were tested to Condition I (sea level altitude), Method B.

Results:

| Male Connector       | Female Connector     | Condition                | Result                |  |
|----------------------|----------------------|--------------------------|-----------------------|--|
| M55-7102642R         | M55-6102642R         | 500V AC for 1 minute     | PASS (no breakdown)   |  |
| Horizontal connector | Horizontal connector | 300 V AC 101 1 IIIIII0te | PASS (110 bleakdowii) |  |
| M55-7002642R         | M55-6002642R         | 500V AC for 1 minute     | PASS (no breakdown)   |  |
| Vertical connector   | Vertical connector   | 300V AC 101 1 IIIIII0te  | PASS (110 Dreakdowii) |  |
| M55-7021242R         | M55-8001242-0150A    | 500V AC for 1 minute     | PASS (no breakdown)   |  |
| Vertical connector   | Cable Assembly       | 500V AC 101 1 IIIIII0te  | PASS (NO DIEBROOWN)   |  |
| M55-7001242R         | M55-8201242          | FOOV AC for 1 migusts    | PASS (no breakdown)   |  |
| Vertical connector   | Cable connector      | 500V AC for 1 minute     | PASS (NO DIEBROOWN)   |  |

## 3.3. Insulation Resistance: EIA-364-21C

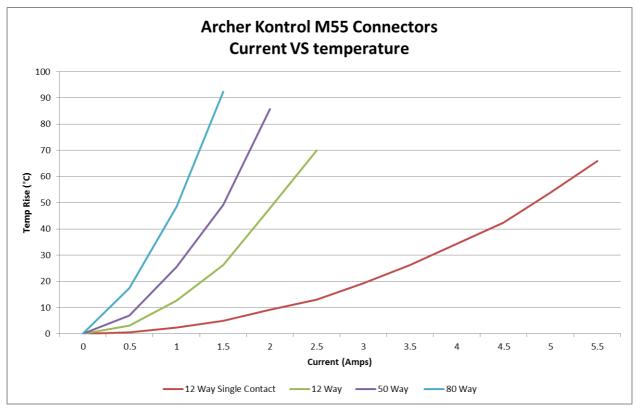
<u>Methodology:</u> The following combinations were tested:

- PCB Connectors: 26-contact connectors, tested to  $10G\Omega$  by stimulating adjacent pins at a voltage difference of 500V DC for 1 minute
- Cable Connectors/Assembly: 12-contact connectors, tested to  $1G\Omega$  by stimulating adjacent pins at a voltage difference of 500V DC for 1 minute.

#### Results:

| Connector         | Туре                        | Specification | Result<br>(initial) | Result after humidity test |
|-------------------|-----------------------------|---------------|---------------------|----------------------------|
| M55-6102642R      | Male Horizontal connector   | 10G <b>Ω</b>  | PASS                | PASS                       |
| M55-7102642R      | Female Horizontal connector | 10G <b>Ω</b>  | PASS                | PASS                       |
| M55-6002642R      | Male Vertical connector     | 10G <b>Ω</b>  | PASS                | PASS                       |
| M55-7002642R      | Male Vertical connector     | 10G <b>Ω</b>  | PASS                | PASS                       |
| M55-8001242-0150A | Female Cable Assembly       | 1GΩ           | PASS                | PASS                       |
| M55-8201242       | Female Cable connector      | 1GΩ           | PASS                | PASS                       |




# 3.4. Temperature Rise Versus Current: EIA-364-70A, Method 2

#### 3.4.1. Vertical PCB Connectors

<u>Methodology:</u> The test demonstrates the current carrying capability of a single pin, 12-contact, 50-contact and 80-contact connectors at elevated ambient temperatures. Each mating pair was soldered to a PCB to create a circuit in series. 0.5A increments were applied and the temperature rise above ambient recorded in each case. The test was stopped at either 4A or until a 60°C rise was recorded. <u>Results:</u>

| Number of                     | Male Connector | Mala Capacitas Female |                  | Assembly Resistance ‡ (Ω) |  |  |
|-------------------------------|----------------|-----------------------|------------------|---------------------------|--|--|
| contacts                      | Male Connector | Connector             | Pre-conditioning | Post-conditioning         |  |  |
| Single Pin (on<br>12-contact) | M55-7021242R   | M55-6021242R          | 0.046            | 0.046                     |  |  |
| 12                            | M55-7021242R   | M55-6021242R          | 0.201            | 0.2                       |  |  |
| 50                            | M55-7025042R   | M55-6025042R          | 0.890            | 0.9                       |  |  |
| 80                            | M55-7028042R   | M55-6028042R          | 1.560            | 1.57                      |  |  |

**‡** Assembly Resistance includes both the resistance of the contacts, PCB, and connecting wires to the test equipment.



#### 3.4.2. Cable Connectors

<u>Methodology:</u> The test demonstrates the current carrying capability of a 26-contact connector at elevated ambient temperatures. The mating pair was soldered to a PCB to create a circuit in series. 0.5A was applied and the temperature rise above ambient recorded. <u>Results:</u>

| Male         | Fomale Connector  | Temperature Rise (°C) |       |       |       |       |       |         |
|--------------|-------------------|-----------------------|-------|-------|-------|-------|-------|---------|
| Connector    | Female Connector  | 1                     | 2     | 3     | 4     | 5     | 6     | Average |
| M55-7022642R | M55-8002642-0150A | 13.89                 | 15.41 | 11.03 | 12.99 | 11.87 | 12.91 | 13.02   |



# 3.5. Thermal Shock to EIA-364-32C, Condition III

# 3.5.1. Vertical PCB Connectors

<u>Methodology:</u> A mated pair of M55-6002442R and M55-7002442R (24-way PCB vertical connectors) were used for the test. Contact resistance before and after the thermal shock conditioning were measured, and the difference calculated. The results shown in the table are the results over 10 pins. <u>Specification:</u> The change in Contact Resistance must be less than  $10m\Omega$ , and the connectors must show no evidence of physical damage.

Results:

| Change  | Visual lacacetics |         |                   |  |
|---------|-------------------|---------|-------------------|--|
| Аvегаде | Maximum           | Minimum | Visual Inspection |  |
| 0.77    | 1.64              | 0.08    | PASS              |  |

#### 3.5.2. Cable Connectors

<u>Methodology:</u> Six mated pairs of M55-8002642-0150A (26-contact female cable assembly) and M55-7022642R (26-contact male PCB vertical connectors) were used for the test. Contact resistance before and after the thermal shock conditioning were measured, and the difference calculated. The results shown in the table are the results over 10 pins.

<u>Specification:</u> The Contact Resistance must be less than 1,000m $\Omega$ , and the connectors must show no evidence of physical damage.

Results:

|   | Pre-Conditioning (m $\Omega$ ) |       |         | Post-Conditioning (m $\Omega$ ) |       |         | Visual Inspection |  |
|---|--------------------------------|-------|---------|---------------------------------|-------|---------|-------------------|--|
| ı | Max                            | Min   | Average | Max                             | Min   | Average | Visual Inspection |  |
|   | 128.9                          | 106.7 | 111.2   | 154.2                           | 117.9 | 132.3   | PASS              |  |

## 3.6. Temperature Life: EIA-364-17B, Condition 5, Method A

<u>Methodology:</u> The mated pair of connectors were subject to 96 hours at 125±2°C. <u>Specifications:</u>

- PCB Connectors: change in Contact Resistance must be less than  $10m\Omega$ , and the connectors must show no evidence of physical damage
- Cable Connectors/Assembly: Contact Resistance must be less than  $1,000m\Omega$

Results:

| Pre-0 | Pre-Conditioning (m $\Omega$ ) |         |       | Condition | Visual Inspection |                   |  |
|-------|--------------------------------|---------|-------|-----------|-------------------|-------------------|--|
| Max   | Min                            | Average | Max   | Min       | Average           | Visual Inspection |  |
| 131.1 | 117.2                          | 123.3   | 143.3 | 128.9     | 134.1             | PASS              |  |

# 3.7. Salt Spray: EIA-364-26B

# 3.7.1. PCB Connectors

<u>Methodology:</u> A mated pair of connectors were measured for contact resistance, then subjected to 24 hours continuous exposure to a 5% salt spray concentration, with ambient temperature at 35 +1/-2°C. <u>Specification:</u> The change in Contact Resistance must be less than  $10m\Omega$ , and the connectors must show no evidence of physical damage.

Results:

| Change in | Contact Resist | Visual Inspection |                   |
|-----------|----------------|-------------------|-------------------|
| Average   | Maximum        | Minimum           | Visual Inspection |
| 0.72      | 1.30           | 0.30              | PASS              |



#### 3.7.2. Cable Connectors

<u>Methodology:</u> A mated pair of connectors were measured for contact resistance, then subjected to 24 hours continuous exposure to a 5% salt spray concentration, with ambient temperature at 35 +1/-2°C. <u>Specification:</u> The Contact Resistance must be less than 1,000m $\Omega$ , and the connectors must show no evidence of physical damage.

Results:

| Pre-Conditioning (m $\Omega$ ) |       |         | Post-Conditioning (mΩ) |       |         | Visual lacacetics |  |
|--------------------------------|-------|---------|------------------------|-------|---------|-------------------|--|
| Max                            | Min   | Average | Max                    | Min   | Average | Visual Inspection |  |
| 128.9                          | 106.7 | 111.2   | 154.2                  | 117.9 | 132.3   | PASS              |  |

## 3.8. Humidity: EIA-364-31B, Condition A

#### 3.8.1. PCB Connectors

<u>Methodology:</u> A mated pair of connectors were measured for contact resistance, then subjected to 96 hours at relative humidity of 90-95%, 40±-2°C.

<u>Specification</u>: The change in Contact Resistance must be less than  $10m\Omega$ , and the connectors must show no evidence of physical damage. Insulation Resistance and Dielectric Withstanding Voltage are also checked after the exposure test, to >1,000M $\Omega$  and 500V AC for 1 minute respectively. Results:

| Change in Contact Resistance (m $\Omega$ ) |         | Visual  | Insulation | Dielectric Withstanding |         |
|--------------------------------------------|---------|---------|------------|-------------------------|---------|
| Average                                    | Maximum | Minimum | Inspection | Resistance              | Voltage |
| 0.84                                       | 1.40    | 0.30    | PASS       | PASS                    | PASS    |

#### 3.8.2. Cable Connectors

<u>Methodology:</u> A mated pair of connectors were measured for contact resistance, then subjected to 96 hours at relative humidity of 90–95%,  $40\pm-2^{\circ}$ C.

<u>Specification:</u> The Contact Resistance must be less than 1,000m $\Omega$ , and the connectors must show no evidence of physical damage. Insulation Resistance and Dielectric Withstanding Voltage are also checked after the exposure test, to >5M $\Omega$  and 300V AC for 1 minute respectively. <u>Results:</u>

| Pre-Conditioning (m $\Omega$ ) |       |         | Post- | Conditio | ning (mΩ) | Visual     | Insulation | Dielectric<br>Withstanding |  |
|--------------------------------|-------|---------|-------|----------|-----------|------------|------------|----------------------------|--|
| Max                            | Min   | Average | Max   | Min      | Average   | inspection | Resistance | Voltage                    |  |
| 128.9                          | 106.7 | 111.2   | 154.2 | 117.9    | 132.3     | PASS       | PASS       | PASS                       |  |

#### 3.9. Vibration: EIA-364-28D

Methodology: Test conditions:

• Amplitude: 1.52mm peak to peak

Sweep: 10 to 2,000 to 10Hz in 20 minutes
Acceleration: 196.1m/s² (20G) at peak

Duration: 4 hours in each axis, 12 hours total

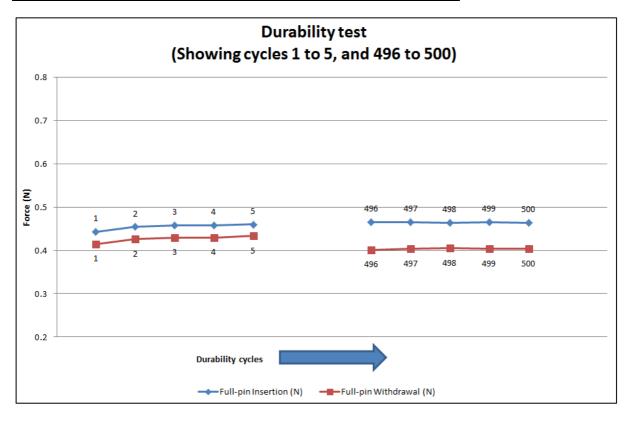
#### Test samples:

- Mated pair of M55-6022442R and M55-7022442R (24-contact female and male vertical PCB connectors), soldered to a PCB
- Mated pair of M55-6102442R and M55-7102442R (24-contact female and male horizontal PCB connectors), soldered to a PCB
- Mated pair of M55-8002642-0150A (26-contact female cable assembly), and two M55-7022642R (26-contact male vertical PCB connectors) soldered to a PCB

#### Results:

- No evidence of physical damage and meets the electrical requirements.
- No discontinuity measured.



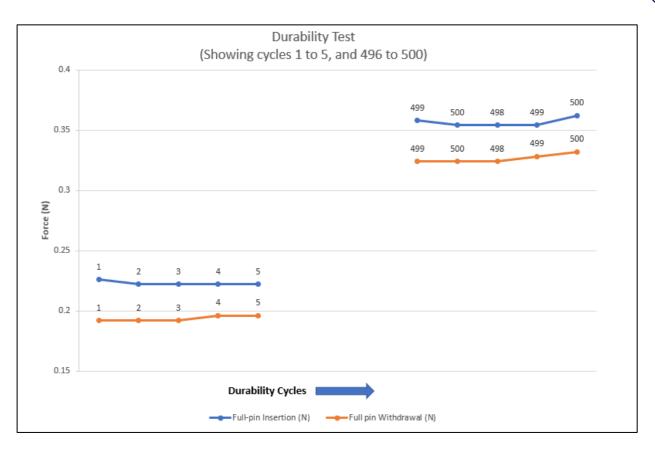

# 3.10. Durability, Insertion and Withdrawal Forces: EIA-364-13C

#### 3.10.1. Vertical PCB Connectors

<u>Methodology:</u> A mating pair of 26-contact connectors (M55-6022642R and M55-7022642R) was used during this test. Insertion and withdrawal forces per pin were measured during the first 5 mating cycles. The parts were then mated 500 times, with further force measurements for insertion and withdrawal carried out on the last 5 cycles.

<u>Specification:</u> 0.8N max insertion force per contact, 0.2N min withdrawal force per contact <u>Results:</u>

| Force per pin (N) | Average | Maximum | Minimum | Result |  |
|-------------------|---------|---------|---------|--------|--|
| Insertion         | 0.46    | 0.47    | 0.44    | PASS   |  |
| Withdrawal        | 0.41    | 0.43    | 0.40    | PASS   |  |




#### 3.10.2. Cable Connectors

<u>Methodology:</u> 26-contact connectors M55-8002642-0150A (female cable assembly) and M55-7022642R (male vertical PCB connector) was used during this test. Insertion and withdrawal forces per pin were measured during the first 5 mating cycles. The parts were then mated 500 times, with further force measurements for insertion and withdrawal carried out on the last 5 cycles. <u>Results:</u>

| Force per pin (N) | Average | Maximum | Minimum | Result |
|-------------------|---------|---------|---------|--------|
| Insertion         | 0.29    | 0.36    | 0.22    | PASS   |
| Withdrawal        | 0.26    | 0.33    | 0.19    | PASS   |





# 3.11. Contact Retention Force: EIA-364-29C

<u>Methodology:</u> A sample of each type of gender and orientation of connector was tested for individual contact retention in the housing.

Specification: 3.9N minimum. The contacts are extracted at 25.4mm/minute.

Results:

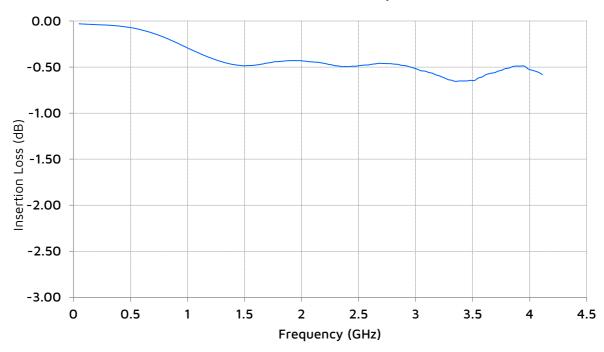
| Connector type    | Average (N) | Maximum (N) | Minimum (N) | Result |
|-------------------|-------------|-------------|-------------|--------|
| Female Horizontal | 11.3        | 11.9        | 10.4        | PASS   |
| Female Vertical   | 12.1        | 13.5        | 11.3        | PASS   |
| Male Horizontal   | 11.9        | 14.0        | 11.1        | PASS   |
| Male Vertical     | 19.7        | 21.3        | 17.8        | PASS   |

# 3.12. Plating Finish Thicknesses

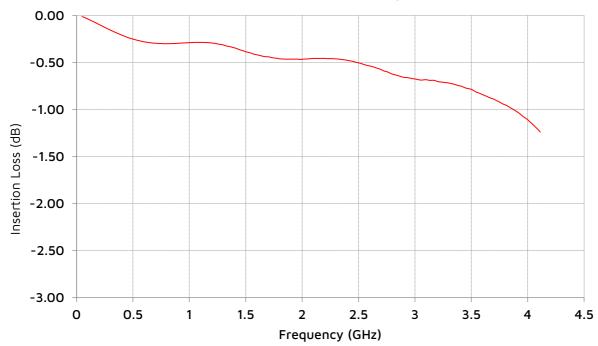
<u>Methodology:</u> Plating thicknesses were checked at various key areas of the contacts. Results:

| Inspection area                                | Required min thickness (µm) | Average<br>(µm) | Maximum<br>(µm) | Minimum<br>(µm) | Result |
|------------------------------------------------|-----------------------------|-----------------|-----------------|-----------------|--------|
| Contact area, Gold                             | 0.025                       | 0.030           | 0.042           | 0.026           | PASS   |
| Contact area, Nickel underplating              | 2                           | 2.48            | 3.19            | 2.17            | PASS   |
| Solder area, Tin                               | 2.5                         | 2.72            | 3.00            | 2.55            | PASS   |
| SMT Hold-down retainer,<br>Tin                 | 2.5                         | 3.07            | 3.25            | 2.80            | PASS   |
| SMT Hold-down retainer,<br>Nickel underplating | 1                           | 1.39            | 1.51            | 1.27            | PASS   |




# 3.13. Frequency Range

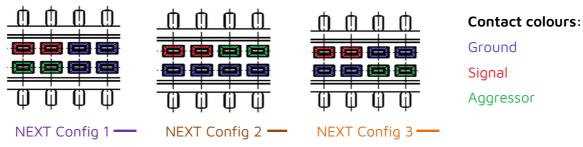
<u>Methodology:</u> A selection of 50-contact connectors (Vertical: M55-6005042R, M55-7005042R; Horizontal: M55-6105042R, M55-7105042R) were mounted to specially made test boards, which were attached to a network analyser. The network analyser created signal to measure insertion loss for a differential signal, and Near End Cross Talk (NEXT) in 3 different arrangements.

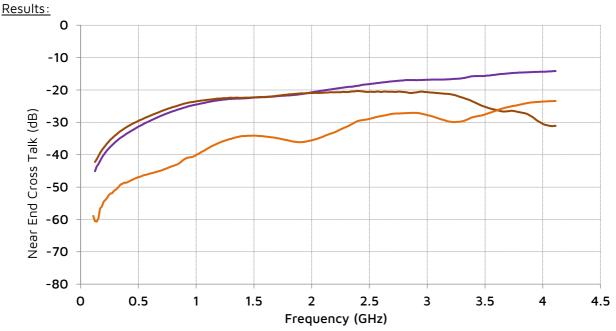

For more detail on this test and further explanation on the conclusion, see Test Report 1746.

## 3.13.1. Insertion Loss

# Vertical to Vertical: M55-6005042R, M55-7005042R




# Horizontal to Vertical: M55-6005042R, M55-7105042R






# 3.13.2. Near End Cross Talk (NEXT)

<u>Methodology:</u> Three different combinations of cross talk were measured with differential signals:





From the results in these two tests, common 'rules of thumb' are applied to establish a data rate:

- Double the signal bandwidth (Hz) for the data rate in Bits per second. For example, a 1GHz bandwidth would mean a 2Gbit/s signal can be transmitted through a connector.
- The bandwidth cut-off frequency of a connector is at -3dB (half the power) on insertion loss.
- Bandwidth of a connector is also limited when a neighbouring transmission line has crosstalk at -20dB (1/10th the voltage) into the signal line.

The conclusion is drawn that a conservative estimate (to the nearest integer) establishes a data rate of 3Gbit/s for this connector system.